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Abstract. The quantum ferromagnetic transition of itinerant electrons is considered. We
give a paedagogical review of recent results which show that zero-temperature soft modes
that are commonly neglected invalidate the standard Landau–Ginzburg–Wilson description of
this transition. If these modes are taken into account, then the resulting order parameter
field theory is non-local in space and time. Nevertheless, both for disordered and for clean
systems the critical behaviour has been exactly determined for spatial dimensionsd > 2 and
d > 1, respectively. The critical exponents characterizing the paramagnetic-to-ferromagnetic
transition are dimensionality-dependent and substantially different both from mean-field critical
exponents and from the classical Heisenberg exponents that characterize the transition at finite
temperatures. Our results should be easily observable, particularly those for the disordered case,
and experiments to check our predictions are proposed.

1. Introduction

Phase transitions that occur in a quantum mechanical system at zero temperature (T = 0)
as a function of some non-thermal control parameter are called quantum phase transitions.
In contrast to their finite-temperature counterparts, which are often referred to as thermal
or classical phase transitions, the critical fluctuations with which one has to deal at zero
temperature are quantum fluctuations rather than thermal ones and the need for a quantum
mechanical treatment of the relevant statistical mechanics makes the theoretical description
of quantum phase transitions somewhat different from that of classical ones. However, as
Hertz has shown in a seminal paper [1], the basic theoretical concepts that have led to
successful descriptions and understanding of thermal transitions work in the quantum case
as well.

Experimentally, the zero-temperature behaviour of any material of course cannot be
studied directly; furthermore, the most obvious control parameter that drives a system
through a quantum transition is often some microscopic coupling strength that is hard to
change experimentally. As a result, the dimensionless distance from the critical point,t ,
which for classical transitions with a transition temperatureTc is given by t = T/Tc − 1
and is easy to tune with high accuracy, is much harder to control in the quantum case.
However, t is usually dependent on some quantity that can be experimentally controlled,
such as the composition of the material. Also, the zero-temperature critical behaviour
manifests itself already at low but finite temperatures. Indeed, in a system with a very low
thermal transition temperature all but the final asymptotic behaviour in the critical region
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is dominated by quantum effects. The study of quantum phase transitions is therefore far
from being of theoretical interest only.

Perhaps the most obvious example of a quantum phase transition is the paramagnet-
to-ferromagnet transition of itinerant electrons atT = 0 as a function of the exchange
interaction between the electronic spins. Early theoretical work [1] on this transition
suggested that the critical behaviour in the physical dimensionsd = 2 and 3 was not
dominated by fluctuations and mean-field like, as is the thermal ferromagnetic transition
in dimensionsd > 4. The reason for this is a fundamental feature of quantum statistical
mechanics, namely the fact that statics and dynamics are coupled. As a result, a quantum
mechanical system ind dimensions is very similar to the corresponding classical system in
d + z dimensions, where the so-called dynamical critical exponentz can be thought of as
an extra dimensionality that is provided to the system by time or temperature. The(d + z)-
dimensional space relevant to the statistical mechanics of the quantum system bears some
resemblance to(d + 1)-dimensional Minkowski space, butz doesnot need to be equal to
unity in non-relativistic systems. For clean and disordered itinerant quantum ferromagnets,
one findsz = 3 andz = 4, respectively, in mean-field theory. This appears to reduce the
upper critical dimensiond+

c , above which fluctuations are unimportant and simple mean-
field theory yields the correct critical behaviour, fromd+

c = 4 in the classical case tod+
c = 1

and d+
c = 0, respectively, in the clean and disordered quantum cases. If this were true,

then this quantum phase transition would be rather uninteresting from a critical phenomena
point of view.

It has been known for some time that, for the case of disordered systems, this conclusion
cannot be correct [2]. It is known that, in any system with quenched disorder that undergoes
a phase transition, the critical exponentν that describes the divergence of the correlation
length,ξ ∼ t−ν for t → 0, must satisfy the inequalityν > 2/d [3]. However, mean-field
theory yieldsν = 1

2, which is incompatible with this inequality ford < 4. Technically, this
implies that the disorder must be a relevant perturbation with respect to the mean-field fixed
point. The mean-field fixed point must therefore be unstable and the phase transition must
be governed by some other fixed point that has a correlation length exponentν > 2/d.

Such a non-mean-field-like fixed point has recently been discovered and the critical
behaviour has been determined exactly for all dimensionsd > 2 [4]. It was found that both
the valued+

c = 0 for the upper critical dimension and the prediction of mean-field critical
behaviour ford > d+

c were incorrect. Instead,d+
c = 2 and, although both the quantum

fluctuations and the disorder fluctuations are irrelevant with respect to the new fixed point
for all d > d+

c , there are two other ‘upper critical dimensionalities’,d++
c = 4 andd+++

c = 6.
The critical behaviour ford+

c < d < d+++
c is governed by a non-standard Gaussian fixed

point with non-mean-field-like exponents and only ford > d+++
c does one obtain mean-

field exponents. In addition, the clarification of the physics behind this surprising behaviour
has led to the conclusion that very similar effects occur in clean systems [5]. In that case,
d+

c = 1 in agreement with the early result, but again the critical behaviour is non-trivial in
a range of dimensionalitiesd+

c < d 6 d++
c = 3, and only ford > d++

c does one obtain
mean-field critical behaviour. In addition, we have found that Hertz’s 1− ε expansion
for the clean case is invalid. This explains an inconsistency between this expansion and
an exact exponent relation that was noted earlier by Sachdev [6]. In order to keep our
discussion focused, in that which follows we will restrict ourselves to the disordered case,
for which the effects are more pronounced, and will only quote results for the clean case
when appropriate.

The basic physical reason behind the complicated behaviour above the upper critical
dimensionalityd+

c , namely in a regime in parameter space in which the critical behaviour
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is not dominated by fluctuations, is simple. According to our general understanding of
continuous phase transitions or critical points, in order to understand the critical singularities
at any such transition, one must identify all of the slow or soft modes near the critical
point and one must make sure that all of these soft modes are properly included in the
effective theory for the phase transition. This is obvious, since critical phenomena are
effects that occur on very large length and time scales; hence soft modes, whose excitation
energies vanish in the limit of long wavelengths and small frequencies, will in general
influence the critical behaviour. In previous work on the ferromagnetic transition it was
implicitly assumed that the only relevant soft modes are the fluctuations of the order
parameter, namely the magnetization. For finite temperatures this is correct. However,
at T = 0 there are additional soft modes in a disordered electron system, namely
diffusive particle–hole excitations that are distinct from the spin density excitations that
determine the magnetization. In many-body perturbation theory these modes manifest
themselves as products of retarded and advanced Green’s functions and in field theory
they can be interpreted as the Goldstone modes that result from the spontaneous breaking
of the symmetry between retarded and advanced correlation functions, or between positive
and negative imaginary frequencies. In a different context, namely the transport theory
for disordered electron systems, these diffusive excitations are sometimes referred to as
‘diffusons’ and ‘Cooperons’, respectively, and they are responsible for what is known as
‘weak localization effects’ in disordered electron systems [7]. For our purposes, their most
important feature is their spatial long-range nature in the zero-frequency limit. This long-
range nature follows immediately from the diffusion equation(

∂t − D∂2
x

)
f (x, t) = 0 (1.1a)

for some diffusive quantityf , with D the diffusion constant. Solving this equation by
means of a Fourier–Laplace transform to wavevectorsq and complex frequenciesz, one
obtains in the limit of zero frequency

f (q, z = 0) = 1

Dq2
f (q, t = 0). (1.1b)

Long-range static correlations are thus an immediate consequence of the diffusive nature of
the density dynamics in disordered systems.

The fact that we are concerned with the zero-frequency or long-time limit is due to
the order parameter, namely the magnetization, being a conserved quantity. Since the only
way to change the order parameter density locally is to transport this conserved quantity
from one region in space to another, in order to develop long-range order over arbitrarily
large distances the system needs an infinitely long time. This in turn means that criticality
can be attained only if the frequency is taken to zero before the wavenumber. This feature
would be lost if there were some type of spin-flip scattering mechanism present and our
results hold only in the absence of such processes. For the same reason, they do not apply
to quantum antiferromagnets, which show a quite different behaviour [8].

It is important that the long-range static correlations mentioned above are distinct from
the order parameter fluctuations. For instance, the latter are soft only at the critical point
and in the ordered phase, whereas the former are soft even in the paramagnetic phase
and they do not change their nature at the critical point. However, since they couple to
the conserved order parameter, they influence the critical behaviour. If one integrates out
these diffusive modes in order to obtain an effective theory or Landau–Ginzburg–Wilson
(LGW) functional in terms of the order parameter only, then their long-range nature leads to
infrared singular integrals, which in turn results in singular vertices in the LGW functional
or diverging coupling constants for couplings between the order parameter fluctuations. The
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usual LGW philosophy of deriving an effective local field theory entirely in terms of the
order parameter field therefore does not lead to a well-behaved field theory in this case.
The situation is analogous to a well-known phenomenon in high-energy physics. Suppose
that some interaction between, say, fermions, is mediated by the exchange of some other
particles, for example gauge bosons of massM. If the bosons are integrated out, then the
resulting theory will be non-renormalizable, that is, it will be ill-behaved on momentum
scales larger than the massM. The non-renormalizable theory corresponds to the order
parameter LGW theory, except that in statistical mechanics one runs into infrared problems
rather than ultraviolet ones. Nevertheless, it turns out that the critical behaviour in our case
can still be determined exactly even after having integrated out the additional soft modes.
The point is that the diffusive modes lead to an effective long-range interaction between the
order parameter fluctuations that falls off in real space liker2−2d . It is known that in general
long-range interactions suppress fluctuation effects [9]. In our case they are strong enough
to suppress not only quantum fluctuations but also any remaining disorder fluctuations. The
critical behaviour is thus dominated neither by quantum fluctuations (since we work above
the upper critical dimensiond+

c ) nor by the disorder fluctuations, but rather is given by a
simple, albeit non-standard (because of the long-range interactions) Gaussian theory. The
resulting Gaussian fixed point allows a correlation length exponent that satisfiesν > 2/d,
as required, and the exponents are dimensionality-dependent for alld < 6. In d = 3 they
are substantially different either from the mean-field exponents or from those for a classical
Heisenberg ferromagnet. This has striking observable consequences, as we will discuss.

The outline of this paper is as follows. In section 2 we first discuss some general
aspects of itinerant ferromagnets and then we give our results for the critical exponents and
for the equation of state near the critical point. Since the purpose of this paper is to give an
exposition and discussion of these results that is as non-technical as possible, they will be
presented without any derivations. In section 3 we discuss these results as well as several
possible experiments that could be performed to test our predicitions. Finally, in section 4
we sketch the derivation of our theoretical results.

2. Results

In order to put the phase transition we are going to consider in perspective, let us first
discuss the qualitative phase diagram that one expects for a disordered itinerant electron
system ind = 3. Let Fa

0 < 0 be the Fermi-liquid parameter that characterizes the strength
of the system’s tendency towards ferromagnetism. For|Fa

0 | < 1 the system is paramagnetic
with a spin susceptibilityχs ∼ 1/(1+Fa

0 ), whereas for|Fa
0 | > 1 the clean Fermi liquid has

a ferromagnetic ground state. In figure 1 we show the qualitative phase diagram one expects
for a disordered system atT = 0 in theFa

0 –λ plane, whereλ is some dimensionless measure
of the disorder. Forλ = 0, we have the transition from a paramagnetic metal (PM) to a
ferromagnetic metal (FM) atFa

0 = −1. At small but non-zeroλ this transition will occur
at somewhat smaller values of|Fa

0 |, since the disorder effectively increases the spin-triplet
electron–electron interaction amplitude and hence|Fa

0 |. This accounts for the curvature
downwards of the PM–FM transition line. At|Fa

0 | = 0, a metal–insulator transition of
Anderson type is known to occur at a critical disorder valueλc [10]. At non-zero|Fa

0 | such
a transition from a paramagnetic metal to a paramagnetic insulator (PI) still occurs, albeit it
now is what is called an Anderson–Mott transition that occurs at a somewhat larger value
of the disorder [11]. The two transition lines will meet at a multicritical point M, and for
large values ofλ and |F a

0 | one expects a ferromagnetic insulator (FI). The transitions from
the FM and PI phases, respectively, to the FI phase have not been studied theoretically,
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which is why we denote them by broken lines in figure 1. We will be mostly interested
in the phase transition that occurs across the PM–FM transition line at finite disorder, but
far away from the metal–insulator transition. However, in section 3 we will return to the
remaining regions in this phase diagram.

Figure 1. A schematic phase diagram for ad = 3 disordered itinerant electron system in the
plane spanned by the Landau parameterFa

0 and the disorderλ at T = 0. See the text for further
explanations.

Figure 2. A schematic phase diagram for a disordered itinerant electron system in the plane
spanned by the Landau parameterFa

0 and the temperatureT . The inset shows the boundary
of the critical region (broken line) and the cross over line (dotted line) that separates classical
critical behaviour (cc) from quantum critical behaviour (qc).

In figure 2 we show the same phase diagram in theFa
0 –T plane for some value of the

disorder 0< λ � λc. With increasing temperatureT , the critical value of|Fa
0 | increases,

since, in order to achieve long-range order, a larger|Fa
0 | is needed to compensate for the

disordering effect of the thermal fluctuations. The inset shows schematically the boundary
of the critical region (the broken line) and the cross over line between classical and quantum
critical behaviour (the dotted line). At any non-zeroT , the asymptotic critical behaviour is
that of a classical Heisenberg magnet, but at sufficiently lowT there is a sizeable region
where quantum critical behaviour can be observed.

Our theoretical results for the zero-temperature paramagnet-to-ferromagnet transition
can be summarized as follows. Lett be the dimensionless distance from the line separating
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the regions PM and FM in figure 1. Then the equation of state, which determines the
magnetizationm as a function oft and the magnetic fieldh, can be written

tm + md/2 + m3 = h (2.1)

where we have left out all pre-factors of the various terms. Equation (2.1) is valid for
all dimensionsd > 2. Notice the termmd/2, which occurs in addition to what otherwise
is an ordinary mean-field equation of state. It is a manifestation of the soft particle–hole
excitations mentioned in the section 1. Ford < 6 it dominates them3 term, and hence we
have for the exponentβ, which determines the vanishing of the zero-field magnetization
via m(t, h = 0) ∼ tβ ,

β =
{

2/(d − 2) for 2 < d < 6

1/2 for d > 6.
(2.2a)

Similarly, the exponentδ, defined bym(t = 0, h) ∼ h1/δ, is obtained as

δ =
{

d/2 for 2 < d < 6

3 for d > 6.
(2.2b)

Now let us consider the order parameter fieldM(x, t) as a function of space and
time, namely the field whose average yields the magnetization,〈M(x, t)〉 = m. Here the
angular brackets〈. . .〉 denote a trace with the full statistical operator; that is, they include a
quantum mechanical expectation value, a disorder average and at non-zero temperature also
a thermal average. We first consider the case ofT = 0 and Fourier transform to wavevectors
q (with modulusq = |q|) and frequenciesω. For the order parameter correlation function
G(q, ω) = 〈M(q, ω)M(−q, −ω)〉 we find in the limit of smallq andω

G(q, ω) = 1

t + qd−2 + q2 − iω/q2
. (2.3)

Here we have again omitted all pre-factors of the terms in the denominator, since they are
of no relevance for our discussion. The most interesting feature in equation (2.3) is the
term qd−2. It is again an immediate consequence of the additional soft modes discussed in
the first section and equation (2.3), like equation (2.1), is valid ford > 2. Forq = ω = 0,
the correlation functionG determines the magnetic susceptibilityχm ∼ G(q = 0, ω = 0)

in zero magnetic field. Hence we haveχm(t) ∼ t−1 ∼ t−γ , where the last relation defines
the critical exponentγ . This yields

γ = 1 (2.4)

which is valid for alld > 2. γ thus has its usual mean-field value. However, for non-zeroq

the anomalousqd−2 term dominates the usualq2-dependence for alld < 4. The correlation
function at zero frequency can then be written

G(q, ω = 0) ∼ 1

1 + (qξ)d−2
(2.5a)

with the correlation lengthξ ∼ t−1/(d−2) ∼ t−ν . For d > 4 theq2 term is dominant and we
have for the correlation length exponentν

ν =
{

1/(d − 2) for 2 < d < 4

1/2 for d > 4.
(2.5b)
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Note thatν > 2/d, as it must be according to the discussion in section 1. The wavenumber-
dependence ofG at criticality, namely att = 0, is characterized by the exponentη:
G(q, ω = 0) ∼ q−2+η. From equation (2.3) we obtain

η =
{

4 − d for 2 < d < 4

0 for d > 4.
(2.6)

Finally, consider the correlation function at a wavenumber such thatqξ = 1. Then one can
write

G(q = ξ−1, ω) ∼ 1

1 − iωτ
(2.7a)

with the relaxation or correlation timeτ ∼ ξ2/t ∼ ξ2+1/ν ∼ ξz, where the last relation
defines the dynamical critical exponentz. From equation (2.5b) we thus obtain

z =
{

d for 2 < d < 4

4 for d > 4.
(2.7b)

Notice that, with increasing dimensionalityd, the exponentsν, η and z ‘lock into’ their
mean-field values atd = d++

c = 4, whereasβ and δ do so only atd = d+++
c = 6. In

the special dimensionsd = 4 and 6 the power-law scaling behaviour quoted above holds
only up to additional multiplicative logarithmic dependences on the variablest , h and T .
Since these corrections to scaling occur only in unphysical dimensions they are of academic
interest only and we refer the interested reader to [4] for details.

The results for the clean case are qualitatively similar, but the anomalous term in the
equation of state, equation (2.1), ismd instead ofmd/2. This is because the additional
soft modes in that case are ballistic instead of diffusive, so their frequency scales with
wavenumber likeω ∼ q rather thanω ∼ q2. As a result, the two special dimensionsd++

c

and d+++
c coincide, and are nowd++

c = 3, whereas the upper critical dimension proper,
above which fluctuations are irrelevant, isd+

c = 1. For 1< d < 3, the exponent values are
β = ν = 1/(d − 2), δ = z = d, η = 3 − d andγ = 1. For d > 3, all exponents take on
their mean-field values as they do in the disordered case ford > 6 and ind = 3 there are
logarithmic corrections to power-law scaling.

We now turn to the behaviour at non-zero temperatures. Then the equation of state
acquires temperature corrections, and it is helpful to distinguish between the casesm � T

and m � T , with m and T measured in suitable units. Taking into account the leading
corrections in either limit, the equation of state reads

tm + md/2 (1 + T/m) = h (for m � T )(
t + T (d−2)/2

)
m + m3 = h (for T � m). (2.8)

Equation (2.8) shows that, for any non-zero temperature, the asymptotic critical behaviour
is not given by the quantum critical exponents. Since equation (2.8) takes temperature into
account only perturbatively, it correctly describes only the initial deviation from the quantum
critical behaviour and approximates the classical critical behaviour by the mean-field result.
A full cross over calculation would yield instead the classical Heisenberg critical behaviour
in the asymptotic limit. Also, we are considering only the saddle-point contribution to the
magnetization. For models with no additional soft modes it has been shown that fluctuations
that act as dangerous irrelevant variables introduce another temperature scale that dominates
the one obtained from the saddle point [2, 12]. In the present case, however, fluctuations
are suppressed by the long-range nature of the effective field theory and the fluctuation
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temperature scale is sub-dominant. The behaviour described by equation (2.8) can be
summarized by means of the generalized homogeneity law

m(t, T , H) = b−β/νm(tb1/ν, T bφ/ν, Hbδβ/ν) (2.9a)

whereβ, ν andδ have the values given above, andb is an arbitrary scale factor. Here

φ = 2ν (2.9b)

is the cross over exponent that describes the deviation from the quantum critical behaviour
due to the relevant perturbation provided by the non-zero temperature. The entryT bφ/ν =
T b2 in the scaling function in equation (2.9a) reflects the fact that the temperature-
dependence of the saddle-point solution is determined by that of the diffusive modes; that
is, frequency or temperature scales likeT ∼ q2 ∼ b−2. The critical temperature scale,
T ∼ b−z, would be dominant if it were present, but since the leading behaviour of the
magnetization is not determined by critical fluctuations, it is suppressed.

By differentiating equation (2.9a) with respect to the magnetic fieldh, one obtains an
analogous homogeneity law for the magnetic susceptibility,χm, namely

χm(t, T , H) = bγ/νχm(tb1/ν, T bφ/ν, Hbδβ/ν) (2.10a)

with

γ = β(δ − 1) = 1 (2.10b)

in agreement with equation (2.4). This result is in agreement with a more direct calculation
of χm: the same temperature corrections that modify the equation of state, equation (2.8),
lead to a replacement of the termqd−2 in the denominator of equation (2.3) by(q2+T )(d−2)/2.
Since the homogeneous order parameter correlation function determines the spin or order
parameter susceptibility, this yields

χm(t, T ) = 1

t + T 1/2ν
(2.10c)

in agreement with equations (2.10a) and (2.10b).
Finally, the critical behaviour of the specific heatcV has been calculated. It is most

convenient to discuss the specific heat coefficient,γV = limT →0 cV /T , which in a Fermi
liquid would simply be a constant. Its behaviour at criticality,t = 0, is adequately
represented by the integral

γV =
∫ 3

0
dq

qd−1

T + qd + q4 + h1−1/δq2
. (2.11a)

Remarkably, in zero magnetic field,γV diverges logarithmically asT → 0 for all dimensions
2 < d < 4. This can be shown to be a consequence of the dynamical exponentz being
exactly equal to the spatial dimensionalityd in that range of dimensionalities. If one
restores the dependence ofγV on t , then one obtains a generalized homogeneity law with
a logarithmic correction for the leading scaling behaviour ofγV

γV (t, T , H) = 2(4 − d) ln b + Fγ (tb1/ν, T bz, Hbδβ/ν) (2.11b)

Here2(x) denotes the step function andFγ is an unknown scaling function. Note thatγV

is determined by Gaussian fluctuations and depends on the critical temperature scale; that is,
T scales liketνz in equation (2.11b). This is the leading temperature scale and whenever it
is present it dominates the diffusive temperature scale that manifests itself in equations (2.9)
and (2.10).

In the clean case, equations (2.9a) and (2.10) still hold, if one uses the appropriate
exponent values and replaces equation (2.9b) by φ = ν. In equation (2.11a), the termq4
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in the denominator of the integrand is replaced byq3 and consequently the argument of the
2 function in equation (2.11b) is 3− d rather than 4− d.

3. Experimental implications and discussion

3.1. Experimental implications

Let us now discuss the experimental implications of the results presented in the preceding
section. Obviously, one needs a material that shows a transition from a paramagnetic state
to a ferromagnetic one at zero temperature as a function of some experimentally tunable
parameterx. Obvious candidates are magnetic alloys of the stoichiometry PxF1−x , with P a
paramagnetic metal and F a ferromagnetic one. Such materials show the desired transition
as a function of the composition parameterx; examples include Ni for the ferromagnetic
component and Al or Ga for the paramagnetic one [13]. At the critical concentrationxc

they also are substantially disordered, but due to the fact that both constituents are metals
they are far from any metal–insulator transition. Our theory should therefore be applicable
to these systems. The schematic phase diagram atT = 0 in the T –x plane is shown in
figure 3. Notice that this is a realistic phase diagram, as opposed to the ‘theoretical’ ones
in figures 1 and 2. A change in the composition parameterx leads, besides to a change in
Fa

0 , to many other changes in the microscopic parameters of the system. Asx is varied, the
system will therefore move on a complicated path in the diagram shown in, say, figure 1.
However, since the critical behaviour near the transition is universal, it is independent from
the exact path travelled.

Figure 3. A schematic phase diagram for an alloy of the form PxF1−x . Tc is the Curie
temperature for the pure ferromagnet F andxc is the critical concentration.

One possible experiment would consist of driving the system at a low, fixed temperature
through the transition by changing the compositionx. Although this involves the preparation
of many samples, this way of probing a quantum phase transition has been used to observe
the metal–insulator transition in P-doped Si [14]. It might also be possible to use the stress-
tuning technique that has been used for the same purpose [15]. Either way one will cross
the transition line along a more or less vertical path in figure 2 and, for a sufficiently low
temperature, this path will go through both the classical and the quantum critical region
indicated in the inset in figure 2. Due to the large difference between the quantum critical
exponents quoted in section 2 and the corresponding exponents for classical Heisenberg
magnets, the resulting cross over should be very pronounced and easily observable. For
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instance, ford = 3 systems our equation (2.2a) predictsβ = 2, whereas the value for the
thermal transition isβclass ≈ 0.37. The resulting cross over in the critical behaviour of
the magnetization is schematically shown in figure 4. Alternatively, one could prepare a
sample with a value ofx that is as close as possible toxc and measure the magnetic-field-
dependence of the magnetization, extrapolated toT = 0, to obtain the exponentδ. Again,
there is a large difference between our prediction ofδ = 1.5 in d = 3 and the classical
valueδclass ≈ 4.86.

Figure 4. The schematic critical behaviour of the magnetizationm at non-zero temperature,
showing the cross over from the quantum critical behaviour (β = 2, broken line) to the classical
critical behaviour (β ≈ 0.37, dotted line). Notice that the actual transition is classical in nature.

Yet another possibility is to measure the zero-field magnetic susceptibility as a function
both of t = |x − xc| and ofT . Equation (2.10a) predicts

χm(t, T ) = T −1/2fχ(T /t2). (3.1)

Herefχ is a scaling function that has two branches,f +
χ for x > xc andf −

χ for x < xc. Both
branches approach a constant for large values of their argument,f ±

χ (y → ∞) = constant.
For small arguments, we havef +

χ (y → 0) ∼ √
y, whereasf −

χ diverges at a non-zero value
y∗ of its argument that signals the classical transition,f −

χ (y → y∗) ∼ (y − y∗)−γclass , with
γclass ≈ 1.39 the susceptibility exponent for the classical transition. Our prediction is then
that a plot ofχmT 1/2 versusT/t2 will yield a universal function the shape of which is
schematically shown in figure 5. Notice that the exponents are knownexactly, so the only
adjustable parameter for plotting experimental data will be the position of the critical point.
This is in sharp contrast to some other quantum phase transitions, especially metal–insulator
transitions, for which the exponent values are not even approximately known, which makes
scaling plots almost meaningless [16].

Finally, one can consider the low-temperature behaviour of the specific heat. According
to equation (2.11b), as the temperature is lowered forx & xc the leading temperature-
dependence of the specific heat will be

cV (T ) ∼ T ln T . (3.2a)

At criticality this behaviour will continue toT = 0, whereas forx > xc it will cross over
to

cV (T ) ∼ (ln t)T . (3.2b)

For x . xc one will encounter the classical Heisenberg transition at which the specific heat
shows a finite cusp (that is the exponentα, defined bycV ∼ (T − Tc)

−α, is negative).
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Figure 5. A schematic prediction for a scaling plot of the magnetic suscteptibility.

3.2. Theoretical discussion

There are also various theoretical implications of the results presented in section 2. One
aspect is the general message that the usual LGW philosophy must not be applied uncritically
to quantum phase transitions, because of the large number of soft modes that exist at zero
temperature in a generic system. If any of these couple to the order parameter, then an
effective theory entirely in terms of the order parameter will not be well behaved. In the
present case we have actually been able to use this to our advantage, since the long-ranged
interaction that the additional soft modes induce in the order parameter theory suppresses
the disorder fluctuations, which is the reason for the remarkable fact that we are able
to determine the critical behaviour of a three-dimensional, disordered system exactly. In
general, however, the presence of soft modes in addition to the order parameter fluctuations
will call for the derivation of a more complete low-energy effective theory that keepsall of
the soft modes explicitly.

Another very interesting aspect is a connection between our results on the ferromagnetic
transition and a substantial body of literature on a problem that appears in the theory
of the metal–insulator transition in interacting disordered electron systems, namely the
transition from PM to PI in figure 1. This problem has been known ever since the
metal–insulator transition of interacting disordered electrons was first considered and it
has led to substantial confusion in that field. Early work on the metal–insulator transition
showed that, in two-dimensional systems without impurity spin-flip scattering, the spin-
triplet interaction amplitude scaled to large values under renormalization group iterations
[17]. This is still true in d = 2 + ε and, since the run-away flow occurs before the
metal–insulator transition has been reached, this precluded the theoretical description of the
latter in such systems. This problem was interpreted, incorrectly as it turned out later, as
a signature of local moment formation in all dimensions [18]. Subsequently, the present
authors studied this problem in some detail [19]. We were able to re-sum the perturbation
theory explicitly and showed that, at a critical value of the interaction strength, or of the
disorder, there is a bulk, thermodynamic phase transition ind > 2 that isnot the metal–
insulator transition. Although this ruled out local moments (which would not lead to a phase
transition), the physical meaning of this transition was obscure at the time since no order
parameter had been identified and its description was entirely in terms of soft diffusion
modes. However, the critical exponents obtained are identical to those given in section 2
for the quantum ferromagnetic phase transition and in both cases logarithmic corrections to
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scaling are found [20]. Because the exponents in the two cases are identical, we conclude
that the transition found earlier by us, whose physical nature was unclear, is actually the
ferromagnetic transition. One also concludes that our speculations in [19] about the nature
of the ordered phase as an ‘incompletely frozen spin phase’ with no long-range magnetic
order were not correct; this phase is actually the metallic ferromagnetic phase. On the
other hand, the techniques used in [19] allowed a determination of the qualitative phase
diagram as a function of dimensionality, which our present analysis is not capable of doing.
This analysis showed the existence of yet another interesting dimensionality aboved = 2,
which we denoted∗. With the appropriate re-interpretation of the ‘incompletely frozen spin
phase’ as the ferromagnetic phase, the qualitative phase diagram for 2< d < d∗ is shown
in figure 6. Compared to figure 1, the following happens asd is lowered fromd = 3.
The multicritical point M moves downwards, and atd = d∗ it reaches theλ axis. d∗

was estimated in [19] to be approximatelyd∗ = 2.03. For d < d∗, the insulator phase
therefore cannot be reached directly from the paramagnetic metal. This explains why in the
perturbative renormalization group calculations ind = 2+ ε one necessarily encounters the
ferromagnetic transition first and it should finally end the long discussion about the physical
meaning of the run-away flow that is encountered in these theories. It also shows that none
of these theories is suitable for studying the metal–insulator transition in the absence of
spin-flip mechanisms, because they start out in the wrong phase.

Figure 6. A schematic phase diagram for a disordered itinerant electron system atT = 0 close
to d = 2. The phases shown are the paramagnetic metal (PM), the ferromagnetic metal (FM)
and the insulator (I) phase. It is not known whether there is another phase transition within I
from a ferromagnetic to a paramagnetic insulator

It should also be pointed out that our earlier theory depended crucially on there being
electronic spin conservation. This feature would be lost of there were some type of impurity
spin-flip-scattering process. In that case, the soft modes that lead to the long-range order
parameter interactions acquire a mass or energy gap and, at sufficiently large scales, the
interactions are effectively of short range. The asymptotic critical phenomena in this case
are described by a short-range, local order parameter field theory with a random mass,
or temperature, term. Such a term is present in the case of a conserved order parameter
also, but due to the long-ranged interaction it turns out to be irrelevant with respect to
the non-trivial Gaussian fixed point. In the absence of the conservation law, however, the
random mass term is relevant with respect to the Gaussian fixed point analogous to the one
discussed here. This emphasizes the important role that is played by the order parameter
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being conserved in our model. The quantum phase transition in a model in which it is not
conserved has been discussed in [8].

We finally discuss why some of our results are in disagreement with Sachdev’s general
scaling analysis [6] of quantum phase transitions with conserved order parameters. For
instance, it follows from our equations (2.10) and (2.11b) that the Wilson ratio, defined
as W = (m/H)/(CV /T ), diverges at criticality rather than being a universal number as
predicted in [6]. Also, for 2< d < 4 the functionFγ in equation (2.11b), for t = 0 and
neglecting corrections to scaling, is a function ofT/H , in agreement with [6], but ford > 4
this is not the case. The reason for this breakdown of general scaling is that we are working
above an upper critical dimensionality and hence dangerous irrelevant variables [21] appear
that prevent a straightforward application of the results of [6] to the present problem. These
dangerous irrelevant variables have to be considered very carefully, on a case by case basis.
This caveat is particularly relevant for quantum phase transitions since they tend to have
a low upper critical dimension. It is well known that a given irrelevant variable can be
dangerous with respect to some observables but not with respect to others. Specifically, in
our case there is a dangerous irrelevant variable that affects the leading scaling behaviour of
the magnetization, but not that of the specific heat coefficient, which leads to the divergence
of the Wilson ratio. This dangerous irrelevant variable is also the reason why the exponents
β andδ, which describe the critical behaviour of the magnetization, remain dimensionality-
dependent up tod = 6, whereas all other exponents ‘lock into’ their mean-field values
already atd = 4.

4. A theoretical outline

Here we sketch the derivation of the results that were presented in section 2. We do so
for completeness only and will be very brief. A detailed account of the derivation can be
found in [4] for the disordered case and in [5] for the clean case.

Hertz [1] has shown how to derive an LGW functional for a quantum ferromagnet.
One starts by separating the spin-triplet part of the electron–electron interaction, namely the
interaction between spin density fluctuations, from the rest of the action, writing

S = S0 + S
(t)
int (4.1a)

with

S
(t)
int = 0t

2

∫
dx ns(x) · ns(x). (4.1b)

Here S
(t)
int is the spin-triplet interaction part of the action andS0 contains all other parts,

in particular the electron–electron interaction in all other channels.0t is the spin-
triplet interaction amplitude, which is related to the Landau parameterFa

0 used above by
0t = −Fa

0 /(1 + Fa
0 ), ns(x) is the electron spin density vector,x = (x, τ ) denotes space

and imaginary time, and
∫

dx = ∫
dx

∫ 1/T

0 dτ . In the critical region near a quantum phase
transition, imaginary time scales like a length to the powerz and the space–time nature
of the integrals in the action accounts for the system’s effective dimensiond + z that was
mentioned in section 1.

Now S
(t)
int is de-coupled by means of a Hubbard–Stratonovich transformation [1]. The

partition function, apart from a non-critical multiplicative constant, can then be written

Z =
∫

D[M ] exp(−8[M ]) (4.2a)
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with the LGW functional

8[M ] = 0t

2

∫
dx M (x) · M (x) − ln

〈
exp

[
− 0t

∫
dx M (x) · ns(x)

]〉
S0

. (4.2b)

Here 〈. . .〉S0 denotes an average taken with the actionS0. If the LGW functional8 is
formally expanded in powers ofM , then the term of orderMn obviously has a coefficient
that is given by a connectedn-point spin-density correlation function of the ‘reference
system’ defined by the actionS0.

At this point we need to remember that our reference systemS0 contains quenched
disorder, which has not been averaged over yet. Then-point correlation functions that form
the coefficients of the LGW functional therefore still depend explicitly on the particular
realization of the randomness in the system. The average over the quenched disorder,
which we denote by{. . .}dis , requires averaging of the free energy, that is we are interested
in {ln Z}dis . This is most easily done by means of the replica trick [22]; that is, one writes

{ln Z}dis = lim
n→0

1

n
({Zn}dis − 1) == lim

n→0

1

n

[ ∫ ∏
α

D[Mα]

{
exp

(
−

n∑
α=1

8α[Mα]

)}
dis

− 1

]
(4.3)

where the indexα labelsn identical replicas of the system. The disorder average is now
easily calculated by expanding the exponential in equation (4.3). Upon re-exponentiation,
the coefficients in the replicated LGW functional are disorder-averaged correlation functions
of the reference system that are cumulants with respect to the disorder average. The Gaussian
part of 8α is simply

8α
(2)[M

α] = 1
2

∫
dx1 dx2 Mα(x1)[δ(x1 − x2) − 0tχ(x1 − x2)] · Mα(x2). (4.4)

Hereχ(x) is the disorder averaged spin susceptibility or two-point spin-density correlation
function of the reference system. The cubic term,8α

(3), has a coefficient given by the
averaged three-point spin-density correlation function. For the quartic term, the cumulant
nature of these correlation functions leads to two terms with different replica structures and
higher order terms have correspondingly more complicated structures.

The next step is to calculate the spin-density correlation functions for the reference
system. It now becomes important that we have kept in our actionS0 the electron–electron
interaction in all channels except for the spin-triplet one that has been de-coupled in deriving
the LGW functional. At this point our treatment deviates from that of Hertz, who took the
reference ensemble to describe non-interacting electrons. This was generally considered an
innocent approximation that should not have any qualitative effects. However, this belief
was mistaken, since the spin-density correlations of interacting electrons are qualitatively
different from those of non-interacting ones. The spin susceptibility can be easily calculated
in perturbation theory. The result shows that the static spin susceptibility as a function of
the wavenumberq is non-analytical atq = 0. For smallq it has the form

χ(q) = constant− qd−2 − q2. (4.5)

The non-analyticity is a consequence of the presence of soft particle–hole excitations in the
spin-triplet channel and it occurs only in an interacting electron system. That is, the pre-
factor of theqd−2 term, which we have suppressed in equation (4.5), vanishes for vanishing
interaction amplitudes. Renormalization group arguments can then be used to ascertain that
this perturbative result indeed represents the exact behaviour ofχ in the long-wavelength
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limit. If one also considers the frequency-dependence ofχ , one obtains the Gaussian part
of the LGW functional in the form

8α
(2)[M ] = 1

2

∑
q

∑
ωn

Mα(q, ωn)(t0 + qd−2 + q2 + |ωn|/q2) · Mα(−q, −ωn) (4.6a)

where

t0 = 1 − 0tχs(q → 0, ωn = 0) (4.6b)

is the bare distance from the critical point and theωn = 2πT n are bosonic Matsubara
frequencies.

The Gaussian theory, equations (4.6), can be analysed using standard renormalization
group techniques [23]. Such an analysis reveals the existence of a Gaussian fixed point
whose critical properties are the ones given in section 2. The remaining question is whether
this fixed point is stable with respect to the higher, non-Gaussian terms in the action. These
higher terms also need to be considered in order to obtain the critical behaviour of the
magnetization.

A calculation of the higher correlation functions that determine the non-Gaussian vertices
of the field theory shows that the non-analyticity that is analogous to the one in the spin
susceptibility, equation (4.5), is stronger and results in a divergence of these correlation
functions in the zero-frequency, long-wavelength limit. Specifically, the leading behaviour
of then-point spin-density correlation that determines the coefficient of the term of orderM n

in the LGW functional, considered at vanishing frequencies as a function of a representative
wavenumberq, is

χ(n)(q → 0) ∼ qd+2−2n. (4.7)

As a result, the coefficients cannot, as usual, be expanded about zero wavenumber and the
theory is non-local. Despite this unpleasant behaviour of the field theory, it is easy to see
by power counting that all of these terms except for one are irrelevant with respect to the
Gaussian fixed point in all dimensionsd > 2. The one exception is the quartic cumulant
contribution that is the disorder average of the square of the spin susceptibility, which is
marginal ind = 4, but irrelevant in all other dimensions. This term is physically of interest,
since it represents the random mass or random temperature contribution that one would
expect in a theory of disordered magnets, that was mentioned in section 3.2 above.

The conclusion from these considerations is that, apart from logarithmic corrections to
scaling in certain special dimensions, the Gaussian theory yields the exact critical behaviour
and the only remaining question pertains to the form of the equation of state. Since
the quartic coefficientχ(4) is a dangerous irrelevant variable for the magnetization, this
requires a scaling interpretation of the infrared divergence ofχ(4). In [4] it has been
shown that, for scaling purposes, the wavenumberq in equation (4.7) can be identified with
the magnetizationm1/2. This is physically plausible, since the divergence stems from an
integration over soft modes that are rendered massive by an external magnetic field. Since
a non-zero magnetization acts physically like a magnetic field, it cuts off the singularity in
equation (4.7). With this interpretation of the singular coefficients, the term of ordermn in
the saddle-point solution of the LGW theory has the structuremn−1(m1/2)d+2−2n = md/2,
which leads to the equation of state given in equation (2.1). One might wonder why
the magnetic fluctuations in the paramagnetic phase do not also cut off the singularity in
equation (4.7) and thus weaken or even destroy the effects discussed above. Although such
a cut-off mechanism does exist, it enters the theory only via the fluctuations, which are RG
irrelevant with respect to the Gaussian fixed point. It therefore manifests itself only in the
corrections to scaling, not in the leading critical behaviour.
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Again, all of these arguments can be repeated for the case without disorder. The only
changes one encounters pertain to the values of various exponents due to the different
character of the soft modes. This leads to the results quoted in section 2.
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